1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- // Copyright (C) 2018-2020 Intel Corporation
- #ifndef OPENCV_GAPI_CORE_HPP
- #define OPENCV_GAPI_CORE_HPP
- #include <math.h>
- #include <utility> // std::tuple
- #include <opencv2/imgproc.hpp>
- #include <opencv2/gapi/imgproc.hpp>
- #include <opencv2/gapi/gmat.hpp>
- #include <opencv2/gapi/gscalar.hpp>
- #include <opencv2/gapi/gkernel.hpp>
- #include <opencv2/gapi/streaming/format.hpp>
- /** \defgroup gapi_core G-API Core functionality
- @{
- @defgroup gapi_math Graph API: Math operations
- @defgroup gapi_pixelwise Graph API: Pixelwise operations
- @defgroup gapi_matrixop Graph API: Operations on matrices
- @defgroup gapi_transform Graph API: Image and channel composition functions
- @}
- */
- namespace cv { namespace gapi {
- /**
- * @brief This namespace contains G-API Operation Types for OpenCV
- * Core module functionality.
- */
- namespace core {
- using GResize = cv::gapi::imgproc::GResize;
- using GResizeP = cv::gapi::imgproc::GResizeP;
- using GMat2 = std::tuple<GMat,GMat>;
- using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
- using GMat4 = std::tuple<GMat,GMat,GMat,GMat>;
- using GMatScalar = std::tuple<GMat, GScalar>;
- G_TYPED_KERNEL(GAdd, <GMat(GMat, GMat, int)>, "org.opencv.core.math.add") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
- if (ddepth == -1)
- {
- // OpenCV: When the input arrays in add/subtract/multiply/divide
- // functions have different depths, the output array depth must be
- // explicitly specified!
- // See artim_op() @ arithm.cpp
- GAPI_Assert(a.chan == b.chan);
- GAPI_Assert(a.depth == b.depth);
- return a;
- }
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GAddC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.addC") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
- GAPI_Assert(a.chan <= 4);
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GSub, <GMat(GMat, GMat, int)>, "org.opencv.core.math.sub") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc b, int ddepth) {
- if (ddepth == -1)
- {
- // This macro should select a larger data depth from a and b
- // considering the number of channels in the same
- // FIXME!!! Clarify if it is valid for sub()
- GAPI_Assert(a.chan == b.chan);
- ddepth = std::max(a.depth, b.depth);
- }
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GSubC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.subC") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GSubRC,<GMat(GScalar, GMat, int)>, "org.opencv.core.math.subRC") {
- static GMatDesc outMeta(GScalarDesc, GMatDesc b, int ddepth) {
- return b.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GMul, <GMat(GMat, GMat, double, int)>, "org.opencv.core.math.mul") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc, double, int ddepth) {
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GMulCOld, <GMat(GMat, double, int)>, "org.opencv.core.math.mulCOld") {
- static GMatDesc outMeta(GMatDesc a, double, int ddepth) {
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GMulC, <GMat(GMat, GScalar, int)>, "org.opencv.core.math.mulC") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc, int ddepth) {
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GMulS, <GMat(GMat, GScalar)>, "org.opencv.core.math.muls") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a;
- }
- }; // FIXME: Merge with MulC
- G_TYPED_KERNEL(GDiv, <GMat(GMat, GMat, double, int)>, "org.opencv.core.math.div") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc b, double, int ddepth) {
- if (ddepth == -1)
- {
- GAPI_Assert(a.depth == b.depth);
- return b;
- }
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GDivC, <GMat(GMat, GScalar, double, int)>, "org.opencv.core.math.divC") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc, double, int ddepth) {
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GDivRC, <GMat(GScalar, GMat, double, int)>, "org.opencv.core.math.divRC") {
- static GMatDesc outMeta(GScalarDesc, GMatDesc b, double, int ddepth) {
- return b.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GMean, <GScalar(GMat)>, "org.opencv.core.math.mean") {
- static GScalarDesc outMeta(GMatDesc) {
- return empty_scalar_desc();
- }
- };
- G_TYPED_KERNEL_M(GPolarToCart, <GMat2(GMat, GMat, bool)>, "org.opencv.core.math.polarToCart") {
- static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc, GMatDesc a, bool) {
- return std::make_tuple(a, a);
- }
- };
- G_TYPED_KERNEL_M(GCartToPolar, <GMat2(GMat, GMat, bool)>, "org.opencv.core.math.cartToPolar") {
- static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc x, GMatDesc, bool) {
- return std::make_tuple(x, x);
- }
- };
- G_TYPED_KERNEL(GPhase, <GMat(GMat, GMat, bool)>, "org.opencv.core.math.phase") {
- static GMatDesc outMeta(const GMatDesc &inx, const GMatDesc &, bool) {
- return inx;
- }
- };
- G_TYPED_KERNEL(GMask, <GMat(GMat,GMat)>, "org.opencv.core.pixelwise.mask") {
- static GMatDesc outMeta(GMatDesc in, GMatDesc) {
- return in;
- }
- };
- G_TYPED_KERNEL(GCmpGT, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGT") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpGE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpGE") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpLE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLE") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpLT, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpLT") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpEQ, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpEQ") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpNE, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.compare.cmpNE") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpGTScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGTScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpGEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpGEScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpLEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLEScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpLTScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpLTScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpEQScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpEQScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GCmpNEScalar, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.compare.cmpNEScalar") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a.withDepth(CV_8U);
- }
- };
- G_TYPED_KERNEL(GAnd, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_and") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GAndS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_andS") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GOr, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_or") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GOrS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_orS") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GXor, <GMat(GMat, GMat)>, "org.opencv.core.pixelwise.bitwise_xor") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GXorS, <GMat(GMat, GScalar)>, "org.opencv.core.pixelwise.bitwise_xorS") {
- static GMatDesc outMeta(GMatDesc a, GScalarDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GNot, <GMat(GMat)>, "org.opencv.core.pixelwise.bitwise_not") {
- static GMatDesc outMeta(GMatDesc a) {
- return a;
- }
- };
- G_TYPED_KERNEL(GSelect, <GMat(GMat, GMat, GMat)>, "org.opencv.core.pixelwise.select") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GMin, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.min") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GMax, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.max") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GAbsDiff, <GMat(GMat, GMat)>, "org.opencv.core.matrixop.absdiff") {
- static GMatDesc outMeta(GMatDesc a, GMatDesc) {
- return a;
- }
- };
- G_TYPED_KERNEL(GAbsDiffC, <GMat(GMat,GScalar)>, "org.opencv.core.matrixop.absdiffC") {
- static GMatDesc outMeta(const GMatDesc& a, const GScalarDesc&) {
- return a;
- }
- };
- G_TYPED_KERNEL(GSum, <GScalar(GMat)>, "org.opencv.core.matrixop.sum") {
- static GScalarDesc outMeta(GMatDesc) {
- return empty_scalar_desc();
- }
- };
- G_TYPED_KERNEL(GCountNonZero, <GOpaque<int>(GMat)>, "org.opencv.core.matrixop.countNonZero") {
- static GOpaqueDesc outMeta(GMatDesc in) {
- GAPI_Assert(in.chan == 1);
- return empty_gopaque_desc();
- }
- };
- G_TYPED_KERNEL(GAddW, <GMat(GMat, double, GMat, double, double, int)>, "org.opencv.core.matrixop.addweighted") {
- static GMatDesc outMeta(GMatDesc a, double, GMatDesc b, double, double, int ddepth) {
- if (ddepth == -1)
- {
- // OpenCV: When the input arrays in add/subtract/multiply/divide
- // functions have different depths, the output array depth must be
- // explicitly specified!
- // See artim_op() @ arithm.cpp
- GAPI_Assert(a.chan == b.chan);
- GAPI_Assert(a.depth == b.depth);
- return a;
- }
- return a.withDepth(ddepth);
- }
- };
- G_TYPED_KERNEL(GNormL1, <GScalar(GMat)>, "org.opencv.core.matrixop.norml1") {
- static GScalarDesc outMeta(GMatDesc) {
- return empty_scalar_desc();
- }
- };
- G_TYPED_KERNEL(GNormL2, <GScalar(GMat)>, "org.opencv.core.matrixop.norml2") {
- static GScalarDesc outMeta(GMatDesc) {
- return empty_scalar_desc();
- }
- };
- G_TYPED_KERNEL(GNormInf, <GScalar(GMat)>, "org.opencv.core.matrixop.norminf") {
- static GScalarDesc outMeta(GMatDesc) {
- return empty_scalar_desc();
- }
- };
- G_TYPED_KERNEL_M(GIntegral, <GMat2(GMat, int, int)>, "org.opencv.core.matrixop.integral") {
- static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc in, int sd, int sqd) {
- return std::make_tuple(in.withSizeDelta(1,1).withDepth(sd),
- in.withSizeDelta(1,1).withDepth(sqd));
- }
- };
- G_TYPED_KERNEL(GThreshold, <GMat(GMat, GScalar, GScalar, int)>, "org.opencv.core.matrixop.threshold") {
- static GMatDesc outMeta(GMatDesc in, GScalarDesc, GScalarDesc, int) {
- return in;
- }
- };
- G_TYPED_KERNEL_M(GThresholdOT, <GMatScalar(GMat, GScalar, int)>, "org.opencv.core.matrixop.thresholdOT") {
- static std::tuple<GMatDesc,GScalarDesc> outMeta(GMatDesc in, GScalarDesc, int) {
- return std::make_tuple(in, empty_scalar_desc());
- }
- };
- G_TYPED_KERNEL(GInRange, <GMat(GMat, GScalar, GScalar)>, "org.opencv.core.matrixop.inrange") {
- static GMatDesc outMeta(GMatDesc in, GScalarDesc, GScalarDesc) {
- return in.withType(CV_8U, 1);
- }
- };
- G_TYPED_KERNEL_M(GSplit3, <GMat3(GMat)>, "org.opencv.core.transform.split3") {
- static std::tuple<GMatDesc, GMatDesc, GMatDesc> outMeta(GMatDesc in) {
- const auto out_depth = in.depth;
- const auto out_desc = in.withType(out_depth, 1);
- return std::make_tuple(out_desc, out_desc, out_desc);
- }
- };
- G_TYPED_KERNEL_M(GSplit4, <GMat4(GMat)>,"org.opencv.core.transform.split4") {
- static std::tuple<GMatDesc, GMatDesc, GMatDesc, GMatDesc> outMeta(GMatDesc in) {
- const auto out_depth = in.depth;
- const auto out_desc = in.withType(out_depth, 1);
- return std::make_tuple(out_desc, out_desc, out_desc, out_desc);
- }
- };
- G_TYPED_KERNEL(GMerge3, <GMat(GMat,GMat,GMat)>, "org.opencv.core.transform.merge3") {
- static GMatDesc outMeta(GMatDesc in, GMatDesc, GMatDesc) {
- // Preserve depth and add channel component
- return in.withType(in.depth, 3);
- }
- };
- G_TYPED_KERNEL(GMerge4, <GMat(GMat,GMat,GMat,GMat)>, "org.opencv.core.transform.merge4") {
- static GMatDesc outMeta(GMatDesc in, GMatDesc, GMatDesc, GMatDesc) {
- // Preserve depth and add channel component
- return in.withType(in.depth, 4);
- }
- };
- G_TYPED_KERNEL(GRemap, <GMat(GMat, Mat, Mat, int, int, Scalar)>, "org.opencv.core.transform.remap") {
- static GMatDesc outMeta(GMatDesc in, Mat m1, Mat, int, int, Scalar) {
- return in.withSize(m1.size());
- }
- };
- G_TYPED_KERNEL(GFlip, <GMat(GMat, int)>, "org.opencv.core.transform.flip") {
- static GMatDesc outMeta(GMatDesc in, int) {
- return in;
- }
- };
- // TODO: eliminate the need in this kernel (streaming)
- G_TYPED_KERNEL(GCrop, <GMat(GMat, Rect)>, "org.opencv.core.transform.crop") {
- static GMatDesc outMeta(GMatDesc in, Rect rc) {
- return in.withSize(Size(rc.width, rc.height));
- }
- };
- G_TYPED_KERNEL(GConcatHor, <GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatHor") {
- static GMatDesc outMeta(GMatDesc l, GMatDesc r) {
- return l.withSizeDelta(+r.size.width, 0);
- }
- };
- G_TYPED_KERNEL(GConcatVert, <GMat(GMat, GMat)>, "org.opencv.imgproc.transform.concatVert") {
- static GMatDesc outMeta(GMatDesc t, GMatDesc b) {
- return t.withSizeDelta(0, +b.size.height);
- }
- };
- G_TYPED_KERNEL(GLUT, <GMat(GMat, Mat)>, "org.opencv.core.transform.LUT") {
- static GMatDesc outMeta(GMatDesc in, Mat) {
- return in;
- }
- };
- G_TYPED_KERNEL(GConvertTo, <GMat(GMat, int, double, double)>, "org.opencv.core.transform.convertTo") {
- static GMatDesc outMeta(GMatDesc in, int rdepth, double, double) {
- return rdepth < 0 ? in : in.withDepth(rdepth);
- }
- };
- G_TYPED_KERNEL(GSqrt, <GMat(GMat)>, "org.opencv.core.math.sqrt") {
- static GMatDesc outMeta(GMatDesc in) {
- return in;
- }
- };
- G_TYPED_KERNEL(GNormalize, <GMat(GMat, double, double, int, int)>, "org.opencv.core.normalize") {
- static GMatDesc outMeta(GMatDesc in, double, double, int, int ddepth) {
- // unlike opencv doesn't have a mask as a parameter
- return (ddepth < 0 ? in : in.withDepth(ddepth));
- }
- };
- G_TYPED_KERNEL(GWarpPerspective, <GMat(GMat, const Mat&, Size, int, int, const cv::Scalar&)>, "org.opencv.core.warpPerspective") {
- static GMatDesc outMeta(GMatDesc in, const Mat&, Size dsize, int, int borderMode, const cv::Scalar&) {
- GAPI_Assert((borderMode == cv::BORDER_CONSTANT || borderMode == cv::BORDER_REPLICATE) &&
- "cv::gapi::warpPerspective supports only cv::BORDER_CONSTANT and cv::BORDER_REPLICATE border modes");
- return in.withType(in.depth, in.chan).withSize(dsize);
- }
- };
- G_TYPED_KERNEL(GWarpAffine, <GMat(GMat, const Mat&, Size, int, int, const cv::Scalar&)>, "org.opencv.core.warpAffine") {
- static GMatDesc outMeta(GMatDesc in, const Mat&, Size dsize, int, int border_mode, const cv::Scalar&) {
- GAPI_Assert(border_mode != cv::BORDER_TRANSPARENT &&
- "cv::BORDER_TRANSPARENT mode is not supported in cv::gapi::warpAffine");
- return in.withType(in.depth, in.chan).withSize(dsize);
- }
- };
- G_TYPED_KERNEL(
- GKMeansND,
- <std::tuple<GOpaque<double>,GMat,GMat>(GMat,int,GMat,TermCriteria,int,KmeansFlags)>,
- "org.opencv.core.kmeansND") {
- static std::tuple<GOpaqueDesc,GMatDesc,GMatDesc>
- outMeta(const GMatDesc& in, int K, const GMatDesc& bestLabels, const TermCriteria&, int,
- KmeansFlags flags) {
- GAPI_Assert(in.depth == CV_32F);
- std::vector<int> amount_n_dim = detail::checkVector(in);
- int amount = amount_n_dim[0], dim = amount_n_dim[1];
- if (amount == -1) // Mat with height != 1, width != 1, channels != 1 given
- { // which means that kmeans will consider the following:
- amount = in.size.height;
- dim = in.size.width * in.chan;
- }
- // kmeans sets these labels' sizes when no bestLabels given:
- GMatDesc out_labels(CV_32S, 1, Size{1, amount});
- // kmeans always sets these centers' sizes:
- GMatDesc centers (CV_32F, 1, Size{dim, K});
- if (flags & KMEANS_USE_INITIAL_LABELS)
- {
- GAPI_Assert(bestLabels.depth == CV_32S);
- int labels_amount = detail::checkVector(bestLabels, 1u);
- GAPI_Assert(labels_amount == amount);
- out_labels = bestLabels; // kmeans preserves bestLabels' sizes if given
- }
- return std::make_tuple(empty_gopaque_desc(), out_labels, centers);
- }
- };
- G_TYPED_KERNEL(
- GKMeansNDNoInit,
- <std::tuple<GOpaque<double>,GMat,GMat>(GMat,int,TermCriteria,int,KmeansFlags)>,
- "org.opencv.core.kmeansNDNoInit") {
- static std::tuple<GOpaqueDesc,GMatDesc,GMatDesc>
- outMeta(const GMatDesc& in, int K, const TermCriteria&, int, KmeansFlags flags) {
- GAPI_Assert( !(flags & KMEANS_USE_INITIAL_LABELS) );
- GAPI_Assert(in.depth == CV_32F);
- std::vector<int> amount_n_dim = detail::checkVector(in);
- int amount = amount_n_dim[0], dim = amount_n_dim[1];
- if (amount == -1) // Mat with height != 1, width != 1, channels != 1 given
- { // which means that kmeans will consider the following:
- amount = in.size.height;
- dim = in.size.width * in.chan;
- }
- GMatDesc out_labels(CV_32S, 1, Size{1, amount});
- GMatDesc centers (CV_32F, 1, Size{dim, K});
- return std::make_tuple(empty_gopaque_desc(), out_labels, centers);
- }
- };
- G_TYPED_KERNEL(GKMeans2D, <std::tuple<GOpaque<double>,GArray<int>,GArray<Point2f>>
- (GArray<Point2f>,int,GArray<int>,TermCriteria,int,KmeansFlags)>,
- "org.opencv.core.kmeans2D") {
- static std::tuple<GOpaqueDesc,GArrayDesc,GArrayDesc>
- outMeta(const GArrayDesc&,int,const GArrayDesc&,const TermCriteria&,int,KmeansFlags) {
- return std::make_tuple(empty_gopaque_desc(), empty_array_desc(), empty_array_desc());
- }
- };
- G_TYPED_KERNEL(GKMeans3D, <std::tuple<GOpaque<double>,GArray<int>,GArray<Point3f>>
- (GArray<Point3f>,int,GArray<int>,TermCriteria,int,KmeansFlags)>,
- "org.opencv.core.kmeans3D") {
- static std::tuple<GOpaqueDesc,GArrayDesc,GArrayDesc>
- outMeta(const GArrayDesc&,int,const GArrayDesc&,const TermCriteria&,int,KmeansFlags) {
- return std::make_tuple(empty_gopaque_desc(), empty_array_desc(), empty_array_desc());
- }
- };
- G_TYPED_KERNEL(GTranspose, <GMat(GMat)>, "org.opencv.core.transpose") {
- static GMatDesc outMeta(GMatDesc in) {
- return in.withSize({in.size.height, in.size.width});
- }
- };
- } // namespace core
- namespace streaming {
- // Operations for Streaming (declared in this header for convenience)
- G_TYPED_KERNEL(GSize, <GOpaque<Size>(GMat)>, "org.opencv.streaming.size") {
- static GOpaqueDesc outMeta(const GMatDesc&) {
- return empty_gopaque_desc();
- }
- };
- G_TYPED_KERNEL(GSizeR, <GOpaque<Size>(GOpaque<Rect>)>, "org.opencv.streaming.sizeR") {
- static GOpaqueDesc outMeta(const GOpaqueDesc&) {
- return empty_gopaque_desc();
- }
- };
- G_TYPED_KERNEL(GSizeMF, <GOpaque<Size>(GFrame)>, "org.opencv.streaming.sizeMF") {
- static GOpaqueDesc outMeta(const GFrameDesc&) {
- return empty_gopaque_desc();
- }
- };
- } // namespace streaming
- //! @addtogroup gapi_math
- //! @{
- /** @brief Calculates the per-element sum of two matrices.
- The function add calculates sum of two matrices of the same size and the same number of channels:
- \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
- The function can be replaced with matrix expressions:
- \f[\texttt{dst} = \texttt{src1} + \texttt{src2}\f]
- The input matrices and the output matrix can all have the same or different depths. For example, you
- can add a 16-bit unsigned matrix to a 8-bit signed matrix and store the sum as a 32-bit
- floating-point matrix. Depth of the output matrix is determined by the ddepth parameter.
- If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
- the same depth as the input matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.add"
- @param src1 first input matrix.
- @param src2 second input matrix.
- @param ddepth optional depth of the output matrix.
- @sa sub, addWeighted
- */
- GAPI_EXPORTS_W GMat add(const GMat& src1, const GMat& src2, int ddepth = -1);
- /** @brief Calculates the per-element sum of matrix and given scalar.
- The function addC adds a given scalar value to each element of given matrix.
- The function can be replaced with matrix expressions:
- \f[\texttt{dst} = \texttt{src1} + \texttt{c}\f]
- Depth of the output matrix is determined by the ddepth parameter.
- If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
- The matrices can be single or multi channel. Output matrix must have the same size and number of channels as the input matrix.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.addC"
- @param src1 first input matrix.
- @param c scalar value to be added.
- @param ddepth optional depth of the output matrix.
- @sa sub, addWeighted
- */
- GAPI_EXPORTS_W GMat addC(const GMat& src1, const GScalar& c, int ddepth = -1);
- //! @overload
- GAPI_EXPORTS_W GMat addC(const GScalar& c, const GMat& src1, int ddepth = -1);
- /** @brief Calculates the per-element difference between two matrices.
- The function sub calculates difference between two matrices, when both matrices have the same size and the same number of
- channels:
- \f[\texttt{dst}(I) = \texttt{src1}(I) - \texttt{src2}(I)\f]
- The function can be replaced with matrix expressions:
- \f[\texttt{dst} = \texttt{src1} - \texttt{src2}\f]
- The input matrices and the output matrix can all have the same or different depths. For example, you
- can subtract two 8-bit unsigned matrices store the result as a 16-bit signed matrix.
- Depth of the output matrix is determined by the ddepth parameter.
- If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
- the same depth as the input matrices. The matrices can be single or multi channel.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.sub"
- @param src1 first input matrix.
- @param src2 second input matrix.
- @param ddepth optional depth of the output matrix.
- @sa add, addC
- */
- GAPI_EXPORTS_W GMat sub(const GMat& src1, const GMat& src2, int ddepth = -1);
- /** @brief Calculates the per-element difference between matrix and given scalar.
- The function can be replaced with matrix expressions:
- \f[\texttt{dst} = \texttt{src} - \texttt{c}\f]
- Depth of the output matrix is determined by the ddepth parameter.
- If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
- The matrices can be single or multi channel. Output matrix must have the same size as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.subC"
- @param src first input matrix.
- @param c scalar value to subtracted.
- @param ddepth optional depth of the output matrix.
- @sa add, addC, subRC
- */
- GAPI_EXPORTS_W GMat subC(const GMat& src, const GScalar& c, int ddepth = -1);
- /** @brief Calculates the per-element difference between given scalar and the matrix.
- The function can be replaced with matrix expressions:
- \f[\texttt{dst} = \texttt{c} - \texttt{src}\f]
- Depth of the output matrix is determined by the ddepth parameter.
- If ddepth is set to default -1, the depth of output matrix will be the same as the depth of input matrix.
- The matrices can be single or multi channel. Output matrix must have the same size as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.subRC"
- @param c scalar value to subtract from.
- @param src input matrix to be subtracted.
- @param ddepth optional depth of the output matrix.
- @sa add, addC, subC
- */
- GAPI_EXPORTS_W GMat subRC(const GScalar& c, const GMat& src, int ddepth = -1);
- /** @brief Calculates the per-element scaled product of two matrices.
- The function mul calculates the per-element product of two matrices:
- \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
- If src1.depth() == src2.depth(), ddepth can be set to the default -1. In this case, the output matrix will have
- the same depth as the input matrices. The matrices can be single or multi channel.
- Output matrix must have the same size as input matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.mul"
- @param src1 first input matrix.
- @param src2 second input matrix of the same size and the same depth as src1.
- @param scale optional scale factor.
- @param ddepth optional depth of the output matrix.
- @sa add, sub, div, addWeighted
- */
- GAPI_EXPORTS_W GMat mul(const GMat& src1, const GMat& src2, double scale = 1.0, int ddepth = -1);
- /** @brief Multiplies matrix by scalar.
- The function mulC multiplies each element of matrix src by given scalar value:
- \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I) \cdot \texttt{multiplier} )\f]
- The matrices can be single or multi channel. Output matrix must have the same size as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.mulC"
- @param src input matrix.
- @param multiplier factor to be multiplied.
- @param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
- @sa add, sub, div, addWeighted
- */
- GAPI_EXPORTS_W GMat mulC(const GMat& src, double multiplier, int ddepth = -1);
- //! @overload
- GAPI_EXPORTS_W GMat mulC(const GMat& src, const GScalar& multiplier, int ddepth = -1); // FIXME: merge with mulc
- //! @overload
- GAPI_EXPORTS_W GMat mulC(const GScalar& multiplier, const GMat& src, int ddepth = -1); // FIXME: merge with mulc
- /** @brief Performs per-element division of two matrices.
- The function divides one matrix by another:
- \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
- For integer types when src2(I) is zero, dst(I) will also be zero.
- Floating point case returns Inf/NaN (according to IEEE).
- Different channels of
- multi-channel matrices are processed independently.
- The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.div"
- @param src1 first input matrix.
- @param src2 second input matrix of the same size and depth as src1.
- @param scale scalar factor.
- @param ddepth optional depth of the output matrix; you can only pass -1 when src1.depth() == src2.depth().
- @sa mul, add, sub
- */
- GAPI_EXPORTS_W GMat div(const GMat& src1, const GMat& src2, double scale, int ddepth = -1);
- /** @brief Divides matrix by scalar.
- The function divC divides each element of matrix src by given scalar value:
- \f[\texttt{dst(I) = saturate(src(I)*scale/divisor)}\f]
- When divisor is zero, dst(I) will also be zero. Different channels of
- multi-channel matrices are processed independently.
- The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.divC"
- @param src input matrix.
- @param divisor number to be divided by.
- @param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
- @param scale scale factor.
- @sa add, sub, div, addWeighted
- */
- GAPI_EXPORTS_W GMat divC(const GMat& src, const GScalar& divisor, double scale, int ddepth = -1);
- /** @brief Divides scalar by matrix.
- The function divRC divides given scalar by each element of matrix src and keep the division result in new matrix of the same size and type as src:
- \f[\texttt{dst(I) = saturate(divident*scale/src(I))}\f]
- When src(I) is zero, dst(I) will also be zero. Different channels of
- multi-channel matrices are processed independently.
- The matrices can be single or multi channel. Output matrix must have the same size and depth as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.divRC"
- @param src input matrix.
- @param divident number to be divided.
- @param ddepth optional depth of the output matrix. If -1, the depth of output matrix will be the same as input matrix depth.
- @param scale scale factor
- @sa add, sub, div, addWeighted
- */
- GAPI_EXPORTS_W GMat divRC(const GScalar& divident, const GMat& src, double scale, int ddepth = -1);
- /** @brief Applies a mask to a matrix.
- The function mask set value from given matrix if the corresponding pixel value in mask matrix set to true,
- and set the matrix value to 0 otherwise.
- Supported src matrix data types are @ref CV_8UC1, @ref CV_16SC1, @ref CV_16UC1. Supported mask data type is @ref CV_8UC1.
- @note Function textual ID is "org.opencv.core.math.mask"
- @param src input matrix.
- @param mask input mask matrix.
- */
- GAPI_EXPORTS_W GMat mask(const GMat& src, const GMat& mask);
- /** @brief Calculates an average (mean) of matrix elements.
- The function mean calculates the mean value M of matrix elements,
- independently for each channel, and return it.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.math.mean"
- @param src input matrix.
- @sa countNonZero, min, max
- */
- GAPI_EXPORTS_W GScalar mean(const GMat& src);
- /** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
- The function polarToCart calculates the Cartesian coordinates of each 2D
- vector represented by the corresponding elements of magnitude and angle:
- \f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
- The relative accuracy of the estimated coordinates is about 1e-6.
- First output is a matrix of x-coordinates of 2D vectors.
- Second output is a matrix of y-coordinates of 2D vectors.
- Both output must have the same size and depth as input matrices.
- @note Function textual ID is "org.opencv.core.math.polarToCart"
- @param magnitude input floating-point @ref CV_32FC1 matrix (1xN) of magnitudes of 2D vectors;
- @param angle input floating-point @ref CV_32FC1 matrix (1xN) of angles of 2D vectors.
- @param angleInDegrees when true, the input angles are measured in
- degrees, otherwise, they are measured in radians.
- @sa cartToPolar, exp, log, pow, sqrt
- */
- GAPI_EXPORTS_W std::tuple<GMat, GMat> polarToCart(const GMat& magnitude, const GMat& angle,
- bool angleInDegrees = false);
- /** @brief Calculates the magnitude and angle of 2D vectors.
- The function cartToPolar calculates either the magnitude, angle, or both
- for every 2D vector (x(I),y(I)):
- \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
- The angles are calculated with accuracy about 0.3 degrees. For the point
- (0,0), the angle is set to 0.
- First output is a matrix of magnitudes of the same size and depth as input x.
- Second output is a matrix of angles that has the same size and depth as
- x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
- @note Function textual ID is "org.opencv.core.math.cartToPolar"
- @param x matrix of @ref CV_32FC1 x-coordinates.
- @param y array of @ref CV_32FC1 y-coordinates.
- @param angleInDegrees a flag, indicating whether the angles are measured
- in radians (which is by default), or in degrees.
- @sa polarToCart
- */
- GAPI_EXPORTS_W std::tuple<GMat, GMat> cartToPolar(const GMat& x, const GMat& y,
- bool angleInDegrees = false);
- /** @brief Calculates the rotation angle of 2D vectors.
- The function cv::phase calculates the rotation angle of each 2D vector that
- is formed from the corresponding elements of x and y :
- \f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
- The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
- the corresponding angle(I) is set to 0.
- @param x input floating-point array of x-coordinates of 2D vectors.
- @param y input array of y-coordinates of 2D vectors; it must have the
- same size and the same type as x.
- @param angleInDegrees when true, the function calculates the angle in
- degrees, otherwise, they are measured in radians.
- @return array of vector angles; it has the same size and same type as x.
- */
- GAPI_EXPORTS_W GMat phase(const GMat& x, const GMat &y, bool angleInDegrees = false);
- /** @brief Calculates a square root of array elements.
- The function cv::gapi::sqrt calculates a square root of each input array element.
- In case of multi-channel arrays, each channel is processed
- independently. The accuracy is approximately the same as of the built-in
- std::sqrt .
- @param src input floating-point array.
- @return output array of the same size and type as src.
- */
- GAPI_EXPORTS_W GMat sqrt(const GMat &src);
- //! @} gapi_math
- //!
- //! @addtogroup gapi_pixelwise
- //! @{
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are greater compare to elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) > \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} > \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices/matrix.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGT"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpLE, cmpGE, cmpLT
- */
- GAPI_EXPORTS_W GMat cmpGT(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGTScalar"
- */
- GAPI_EXPORTS_W GMat cmpGT(const GMat& src1, const GScalar& src2);
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are less than elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) < \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} < \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices/matrix.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLT"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpLE, cmpGE, cmpGT
- */
- GAPI_EXPORTS_W GMat cmpLT(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLTScalar"
- */
- GAPI_EXPORTS_W GMat cmpLT(const GMat& src1, const GScalar& src2);
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are greater or equal compare to elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) >= \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} >= \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpGE"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpLE, cmpGT, cmpLT
- */
- GAPI_EXPORTS_W GMat cmpGE(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLGEcalar"
- */
- GAPI_EXPORTS_W GMat cmpGE(const GMat& src1, const GScalar& src2);
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are less or equal compare to elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) <= \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} <= \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLE"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpGT, cmpGE, cmpLT
- */
- GAPI_EXPORTS_W GMat cmpLE(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpLEScalar"
- */
- GAPI_EXPORTS_W GMat cmpLE(const GMat& src1, const GScalar& src2);
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are equal to elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) == \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} == \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpEQ"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpNE
- */
- GAPI_EXPORTS_W GMat cmpEQ(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpEQScalar"
- */
- GAPI_EXPORTS_W GMat cmpEQ(const GMat& src1, const GScalar& src2);
- /** @brief Performs the per-element comparison of two matrices checking if elements from first matrix are not equal to elements in second.
- The function compares elements of two matrices src1 and src2 of the same size:
- \f[\texttt{dst} (I) = \texttt{src1} (I) != \texttt{src2} (I)\f]
- When the comparison result is true, the corresponding element of output
- array is set to 255. The comparison operations can be replaced with the
- equivalent matrix expressions:
- \f[\texttt{dst} = \texttt{src1} != \texttt{src2}\f]
- Output matrix of depth @ref CV_8U must have the same size and the same number of channels as
- the input matrices.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpNE"
- @param src1 first input matrix.
- @param src2 second input matrix/scalar of the same depth as first input matrix.
- @sa min, max, threshold, cmpEQ
- */
- GAPI_EXPORTS_W GMat cmpNE(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.compare.cmpNEScalar"
- */
- GAPI_EXPORTS_W GMat cmpNE(const GMat& src1, const GScalar& src2);
- /** @brief computes bitwise conjunction of the two matrixes (src1 & src2)
- Calculates the per-element bit-wise logical conjunction of two matrices of the same size.
- In case of floating-point matrices, their machine-specific bit
- representations (usually IEEE754-compliant) are used for the operation.
- In case of multi-channel matrices, each channel is processed
- independently. Output matrix must have the same size and depth as the input
- matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_and"
- @param src1 first input matrix.
- @param src2 second input matrix.
- */
- GAPI_EXPORTS_W GMat bitwise_and(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_andS"
- @param src1 first input matrix.
- @param src2 scalar, which will be per-lemenetly conjuncted with elements of src1.
- */
- GAPI_EXPORTS_W GMat bitwise_and(const GMat& src1, const GScalar& src2);
- /** @brief computes bitwise disjunction of the two matrixes (src1 | src2)
- Calculates the per-element bit-wise logical disjunction of two matrices of the same size.
- In case of floating-point matrices, their machine-specific bit
- representations (usually IEEE754-compliant) are used for the operation.
- In case of multi-channel matrices, each channel is processed
- independently. Output matrix must have the same size and depth as the input
- matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_or"
- @param src1 first input matrix.
- @param src2 second input matrix.
- */
- GAPI_EXPORTS_W GMat bitwise_or(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_orS"
- @param src1 first input matrix.
- @param src2 scalar, which will be per-lemenetly disjuncted with elements of src1.
- */
- GAPI_EXPORTS_W GMat bitwise_or(const GMat& src1, const GScalar& src2);
- /** @brief computes bitwise logical "exclusive or" of the two matrixes (src1 ^ src2)
- Calculates the per-element bit-wise logical "exclusive or" of two matrices of the same size.
- In case of floating-point matrices, their machine-specific bit
- representations (usually IEEE754-compliant) are used for the operation.
- In case of multi-channel matrices, each channel is processed
- independently. Output matrix must have the same size and depth as the input
- matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_xor"
- @param src1 first input matrix.
- @param src2 second input matrix.
- */
- GAPI_EXPORTS_W GMat bitwise_xor(const GMat& src1, const GMat& src2);
- /** @overload
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_xorS"
- @param src1 first input matrix.
- @param src2 scalar, for which per-lemenet "logical or" operation on elements of src1 will be performed.
- */
- GAPI_EXPORTS_W GMat bitwise_xor(const GMat& src1, const GScalar& src2);
- /** @brief Inverts every bit of an array.
- The function bitwise_not calculates per-element bit-wise inversion of the input
- matrix:
- \f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
- In case of floating-point matrices, their machine-specific bit
- representations (usually IEEE754-compliant) are used for the operation.
- In case of multi-channel matrices, each channel is processed
- independently. Output matrix must have the same size and depth as the input
- matrix.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.bitwise_not"
- @param src input matrix.
- */
- GAPI_EXPORTS_W GMat bitwise_not(const GMat& src);
- /** @brief Select values from either first or second of input matrices by given mask.
- The function set to the output matrix either the value from the first input matrix if corresponding value of mask matrix is 255,
- or value from the second input matrix (if value of mask matrix set to 0).
- Input mask matrix must be of @ref CV_8UC1 type, two other inout matrices and output matrix should be of the same type. The size should
- be the same for all input and output matrices.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.pixelwise.select"
- @param src1 first input matrix.
- @param src2 second input matrix.
- @param mask mask input matrix.
- */
- GAPI_EXPORTS_W GMat select(const GMat& src1, const GMat& src2, const GMat& mask);
- //! @} gapi_pixelwise
- //! @addtogroup gapi_matrixop
- //! @{
- /** @brief Calculates per-element minimum of two matrices.
- The function min calculates the per-element minimum of two matrices of the same size, number of channels and depth:
- \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
- where I is a multi-dimensional index of matrix elements. In case of
- multi-channel matrices, each channel is processed independently.
- Output matrix must be of the same size and depth as src1.
- Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.min"
- @param src1 first input matrix.
- @param src2 second input matrix of the same size and depth as src1.
- @sa max, cmpEQ, cmpLT, cmpLE
- */
- GAPI_EXPORTS_W GMat min(const GMat& src1, const GMat& src2);
- /** @brief Calculates per-element maximum of two matrices.
- The function max calculates the per-element maximum of two matrices of the same size, number of channels and depth:
- \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
- where I is a multi-dimensional index of matrix elements. In case of
- multi-channel matrices, each channel is processed independently.
- Output matrix must be of the same size and depth as src1.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.max"
- @param src1 first input matrix.
- @param src2 second input matrix of the same size and depth as src1.
- @sa min, compare, cmpEQ, cmpGT, cmpGE
- */
- GAPI_EXPORTS_W GMat max(const GMat& src1, const GMat& src2);
- /** @brief Calculates the per-element absolute difference between two matrices.
- The function absDiff calculates absolute difference between two matrices of the same size and depth:
- \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
- where I is a multi-dimensional index of matrix elements. In case of
- multi-channel matrices, each channel is processed independently.
- Output matrix must have the same size and depth as input matrices.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.absdiff"
- @param src1 first input matrix.
- @param src2 second input matrix.
- @sa abs
- */
- GAPI_EXPORTS_W GMat absDiff(const GMat& src1, const GMat& src2);
- /** @brief Calculates absolute value of matrix elements.
- The function abs calculates absolute difference between matrix elements and given scalar value:
- \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{matC}(I)|)\f]
- where matC is constructed from given scalar c and has the same sizes and depth as input matrix src.
- Output matrix must be of the same size and depth as src.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.absdiffC"
- @param src input matrix.
- @param c scalar to be subtracted.
- @sa min, max
- */
- GAPI_EXPORTS_W GMat absDiffC(const GMat& src, const GScalar& c);
- /** @brief Calculates sum of all matrix elements.
- The function sum calculates sum of all matrix elements, independently for each channel.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.sum"
- @param src input matrix.
- @sa countNonZero, mean, min, max
- */
- GAPI_EXPORTS_W GScalar sum(const GMat& src);
- /** @brief Counts non-zero array elements.
- The function returns the number of non-zero elements in src :
- \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
- Supported matrix data types are @ref CV_8UC1, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.countNonZero"
- @param src input single-channel matrix.
- @sa mean, min, max
- */
- GAPI_EXPORTS_W GOpaque<int> countNonZero(const GMat& src);
- /** @brief Calculates the weighted sum of two matrices.
- The function addWeighted calculates the weighted sum of two matrices as follows:
- \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
- where I is a multi-dimensional index of array elements. In case of multi-channel matrices, each
- channel is processed independently.
- The function can be replaced with a matrix expression:
- \f[\texttt{dst}(I) = \texttt{alpha} * \texttt{src1}(I) - \texttt{beta} * \texttt{src2}(I) + \texttt{gamma} \f]
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.addweighted"
- @param src1 first input matrix.
- @param alpha weight of the first matrix elements.
- @param src2 second input matrix of the same size and channel number as src1.
- @param beta weight of the second matrix elements.
- @param gamma scalar added to each sum.
- @param ddepth optional depth of the output matrix.
- @sa add, sub
- */
- GAPI_EXPORTS_W GMat addWeighted(const GMat& src1, double alpha, const GMat& src2, double beta, double gamma, int ddepth = -1);
- /** @brief Calculates the absolute L1 norm of a matrix.
- This version of normL1 calculates the absolute L1 norm of src.
- As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
- The \f$ L_{1} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
- is calculated as follows
- \f{align*}
- \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
- \f}
- and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
- \f{align*}
- \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
- \f}
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.norml1"
- @param src input matrix.
- @sa normL2, normInf
- */
- GAPI_EXPORTS_W GScalar normL1(const GMat& src);
- /** @brief Calculates the absolute L2 norm of a matrix.
- This version of normL2 calculates the absolute L2 norm of src.
- As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
- The \f$ L_{2} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
- is calculated as follows
- \f{align*}
- \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
- \f}
- and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
- \f{align*}
- \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
- \f}
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.norml2"
- @param src input matrix.
- @sa normL1, normInf
- */
- GAPI_EXPORTS_W GScalar normL2(const GMat& src);
- /** @brief Calculates the absolute infinite norm of a matrix.
- This version of normInf calculates the absolute infinite norm of src.
- As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
- The \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
- is calculated as follows
- \f{align*}
- \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
- \f}
- and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
- \f{align*}
- \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
- \f}
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.core.matrixop.norminf"
- @param src input matrix.
- @sa normL1, normL2
- */
- GAPI_EXPORTS_W GScalar normInf(const GMat& src);
- /** @brief Calculates the integral of an image.
- The function calculates one or more integral images for the source image as follows:
- \f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
- \f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
- The function return integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f) and
- integral image for squared pixel values; it is \f$(W+1)\times (H+)\f$, double-precision floating-point (64f) array.
- @note Function textual ID is "org.opencv.core.matrixop.integral"
- @param src input image.
- @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
- CV_64F.
- @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
- */
- GAPI_EXPORTS_W std::tuple<GMat, GMat> integral(const GMat& src, int sdepth = -1, int sqdepth = -1);
- /** @brief Applies a fixed-level threshold to each matrix element.
- The function applies fixed-level thresholding to a single- or multiple-channel matrix.
- The function is typically used to get a bi-level (binary) image out of a grayscale image ( cmp functions could be also used for
- this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
- values. There are several types of thresholding supported by the function. They are determined by
- type parameter.
- Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the
- above values. In these cases, the function determines the optimal threshold value using the Otsu's
- or Triangle algorithm and uses it instead of the specified thresh . The function returns the
- computed threshold value in addititon to thresholded matrix.
- The Otsu's and Triangle methods are implemented only for 8-bit matrices.
- Input image should be single channel only in case of cv::THRESH_OTSU or cv::THRESH_TRIANGLE flags.
- Output matrix must be of the same size and depth as src.
- @note Function textual ID is "org.opencv.core.matrixop.threshold"
- @param src input matrix (@ref CV_8UC1, @ref CV_8UC3, or @ref CV_32FC1).
- @param thresh threshold value.
- @param maxval maximum value to use with the cv::THRESH_BINARY and cv::THRESH_BINARY_INV thresholding
- types.
- @param type thresholding type (see the cv::ThresholdTypes).
- @sa min, max, cmpGT, cmpLE, cmpGE, cmpLT
- */
- GAPI_EXPORTS_W GMat threshold(const GMat& src, const GScalar& thresh, const GScalar& maxval, int type);
- /** @overload
- This function applicable for all threshold types except cv::THRESH_OTSU and cv::THRESH_TRIANGLE
- @note Function textual ID is "org.opencv.core.matrixop.thresholdOT"
- */
- GAPI_EXPORTS_W std::tuple<GMat, GScalar> threshold(const GMat& src, const GScalar& maxval, int type);
- /** @brief Applies a range-level threshold to each matrix element.
- The function applies range-level thresholding to a single- or multiple-channel matrix.
- It sets output pixel value to OxFF if the corresponding pixel value of input matrix is in specified range,or 0 otherwise.
- Input and output matrices must be CV_8UC1.
- @note Function textual ID is "org.opencv.core.matrixop.inRange"
- @param src input matrix (CV_8UC1).
- @param threshLow lower boundary value.
- @param threshUp upper boundary value.
- @sa threshold
- */
- GAPI_EXPORTS_W GMat inRange(const GMat& src, const GScalar& threshLow, const GScalar& threshUp);
- //! @} gapi_matrixop
- //! @addtogroup gapi_transform
- //! @{
- /** @brief Creates one 4-channel matrix out of 4 single-channel ones.
- The function merges several matrices to make a single multi-channel matrix. That is, each
- element of the output matrix will be a concatenation of the elements of the input matrices, where
- elements of i-th input matrix are treated as mv[i].channels()-element vectors.
- Output matrix must be of @ref CV_8UC4 type.
- The function split4 does the reverse operation.
- @note
- - Function textual ID is "org.opencv.core.transform.merge4"
- @param src1 first input @ref CV_8UC1 matrix to be merged.
- @param src2 second input @ref CV_8UC1 matrix to be merged.
- @param src3 third input @ref CV_8UC1 matrix to be merged.
- @param src4 fourth input @ref CV_8UC1 matrix to be merged.
- @sa merge3, split4, split3
- */
- GAPI_EXPORTS_W GMat merge4(const GMat& src1, const GMat& src2, const GMat& src3, const GMat& src4);
- /** @brief Creates one 3-channel matrix out of 3 single-channel ones.
- The function merges several matrices to make a single multi-channel matrix. That is, each
- element of the output matrix will be a concatenation of the elements of the input matrices, where
- elements of i-th input matrix are treated as mv[i].channels()-element vectors.
- Output matrix must be of @ref CV_8UC3 type.
- The function split3 does the reverse operation.
- @note
- - Function textual ID is "org.opencv.core.transform.merge3"
- @param src1 first input @ref CV_8UC1 matrix to be merged.
- @param src2 second input @ref CV_8UC1 matrix to be merged.
- @param src3 third input @ref CV_8UC1 matrix to be merged.
- @sa merge4, split4, split3
- */
- GAPI_EXPORTS_W GMat merge3(const GMat& src1, const GMat& src2, const GMat& src3);
- /** @brief Divides a 4-channel matrix into 4 single-channel matrices.
- The function splits a 4-channel matrix into 4 single-channel matrices:
- \f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
- All output matrices must be of @ref CV_8UC1 type.
- The function merge4 does the reverse operation.
- @note
- - Function textual ID is "org.opencv.core.transform.split4"
- @param src input @ref CV_8UC4 matrix.
- @sa split3, merge3, merge4
- */
- GAPI_EXPORTS_W std::tuple<GMat, GMat, GMat,GMat> split4(const GMat& src);
- /** @brief Divides a 3-channel matrix into 3 single-channel matrices.
- The function splits a 3-channel matrix into 3 single-channel matrices:
- \f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
- All output matrices must be of @ref CV_8UC1 type.
- The function merge3 does the reverse operation.
- @note
- - Function textual ID is "org.opencv.core.transform.split3"
- @param src input @ref CV_8UC3 matrix.
- @sa split4, merge3, merge4
- */
- GAPI_EXPORTS_W std::tuple<GMat, GMat, GMat> split3(const GMat& src);
- /** @brief Applies a generic geometrical transformation to an image.
- The function remap transforms the source image using the specified map:
- \f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
- where values of pixels with non-integer coordinates are computed using one of available
- interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
- in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
- \f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
- convert from floating to fixed-point representations of a map is that they can yield much faster
- (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
- cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
- Output image must be of the same size and depth as input one.
- @note
- - Function textual ID is "org.opencv.core.transform.remap"
- - Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- @param src Source image.
- @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2,
- CV_32FC1, or CV_32FC2.
- @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
- if map1 is (x,y) points), respectively.
- @param interpolation Interpolation method (see cv::InterpolationFlags). The methods #INTER_AREA
- and #INTER_LINEAR_EXACT are not supported by this function.
- @param borderMode Pixel extrapolation method (see cv::BorderTypes). When
- borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that
- corresponds to the "outliers" in the source image are not modified by the function.
- @param borderValue Value used in case of a constant border. By default, it is 0.
- */
- GAPI_EXPORTS_W GMat remap(const GMat& src, const Mat& map1, const Mat& map2,
- int interpolation, int borderMode = BORDER_CONSTANT,
- const Scalar& borderValue = Scalar());
- /** @brief Flips a 2D matrix around vertical, horizontal, or both axes.
- The function flips the matrix in one of three different ways (row
- and column indices are 0-based):
- \f[\texttt{dst} _{ij} =
- \left\{
- \begin{array}{l l}
- \texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
- \texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
- \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
- \end{array}
- \right.\f]
- The example scenarios of using the function are the following:
- * Vertical flipping of the image (flipCode == 0) to switch between
- top-left and bottom-left image origin. This is a typical operation
- in video processing on Microsoft Windows\* OS.
- * Horizontal flipping of the image with the subsequent horizontal
- shift and absolute difference calculation to check for a
- vertical-axis symmetry (flipCode \> 0).
- * Simultaneous horizontal and vertical flipping of the image with
- the subsequent shift and absolute difference calculation to check
- for a central symmetry (flipCode \< 0).
- * Reversing the order of point arrays (flipCode \> 0 or
- flipCode == 0).
- Output image must be of the same depth as input one, size should be correct for given flipCode.
- @note Function textual ID is "org.opencv.core.transform.flip"
- @param src input matrix.
- @param flipCode a flag to specify how to flip the array; 0 means
- flipping around the x-axis and positive value (for example, 1) means
- flipping around y-axis. Negative value (for example, -1) means flipping
- around both axes.
- @sa remap
- */
- GAPI_EXPORTS_W GMat flip(const GMat& src, int flipCode);
- /** @brief Crops a 2D matrix.
- The function crops the matrix by given cv::Rect.
- Output matrix must be of the same depth as input one, size is specified by given rect size.
- @note Function textual ID is "org.opencv.core.transform.crop"
- @param src input matrix.
- @param rect a rect to crop a matrix to
- @sa resize
- */
- GAPI_EXPORTS_W GMat crop(const GMat& src, const Rect& rect);
- /** @brief Applies horizontal concatenation to given matrices.
- The function horizontally concatenates two GMat matrices (with the same number of rows).
- @code{.cpp}
- GMat A = { 1, 4,
- 2, 5,
- 3, 6 };
- GMat B = { 7, 10,
- 8, 11,
- 9, 12 };
- GMat C = gapi::concatHor(A, B);
- //C:
- //[1, 4, 7, 10;
- // 2, 5, 8, 11;
- // 3, 6, 9, 12]
- @endcode
- Output matrix must the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.imgproc.transform.concatHor"
- @param src1 first input matrix to be considered for horizontal concatenation.
- @param src2 second input matrix to be considered for horizontal concatenation.
- @sa concatVert
- */
- GAPI_EXPORTS_W GMat concatHor(const GMat& src1, const GMat& src2);
- /** @overload
- The function horizontally concatenates given number of GMat matrices (with the same number of columns).
- Output matrix must the same number of columns and depth as the input matrices, and the sum of rows of input matrices.
- @param v vector of input matrices to be concatenated horizontally.
- */
- GAPI_EXPORTS_W GMat concatHor(const std::vector<GMat> &v);
- /** @brief Applies vertical concatenation to given matrices.
- The function vertically concatenates two GMat matrices (with the same number of cols).
- @code{.cpp}
- GMat A = { 1, 7,
- 2, 8,
- 3, 9 };
- GMat B = { 4, 10,
- 5, 11,
- 6, 12 };
- GMat C = gapi::concatVert(A, B);
- //C:
- //[1, 7;
- // 2, 8;
- // 3, 9;
- // 4, 10;
- // 5, 11;
- // 6, 12]
- @endcode
- Output matrix must the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
- Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
- @note Function textual ID is "org.opencv.imgproc.transform.concatVert"
- @param src1 first input matrix to be considered for vertical concatenation.
- @param src2 second input matrix to be considered for vertical concatenation.
- @sa concatHor
- */
- GAPI_EXPORTS_W GMat concatVert(const GMat& src1, const GMat& src2);
- /** @overload
- The function vertically concatenates given number of GMat matrices (with the same number of columns).
- Output matrix must the same number of columns and depth as the input matrices, and the sum of rows of input matrices.
- @param v vector of input matrices to be concatenated vertically.
- */
- GAPI_EXPORTS_W GMat concatVert(const std::vector<GMat> &v);
- /** @brief Performs a look-up table transform of a matrix.
- The function LUT fills the output matrix with values from the look-up table. Indices of the entries
- are taken from the input matrix. That is, the function processes each element of src as follows:
- \f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I))}\f]
- Supported matrix data types are @ref CV_8UC1.
- Output is a matrix of the same size and number of channels as src, and the same depth as lut.
- @note Function textual ID is "org.opencv.core.transform.LUT"
- @param src input matrix of 8-bit elements.
- @param lut look-up table of 256 elements; in case of multi-channel input array, the table should
- either have a single channel (in this case the same table is used for all channels) or the same
- number of channels as in the input matrix.
- */
- GAPI_EXPORTS_W GMat LUT(const GMat& src, const Mat& lut);
- /** @brief Converts a matrix to another data depth with optional scaling.
- The method converts source pixel values to the target data depth. saturate_cast\<\> is applied at
- the end to avoid possible overflows:
- \f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) + \beta )\f]
- Output matrix must be of the same size as input one.
- @note Function textual ID is "org.opencv.core.transform.convertTo"
- @param src input matrix to be converted from.
- @param rdepth desired output matrix depth or, rather, the depth since the number of channels are the
- same as the input has; if rdepth is negative, the output matrix will have the same depth as the input.
- @param alpha optional scale factor.
- @param beta optional delta added to the scaled values.
- */
- GAPI_EXPORTS_W GMat convertTo(const GMat& src, int rdepth, double alpha=1, double beta=0);
- /** @brief Normalizes the norm or value range of an array.
- The function normalizes scale and shift the input array elements so that
- \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
- (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
- \f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
- when normType=NORM_MINMAX (for dense arrays only).
- @note Function textual ID is "org.opencv.core.normalize"
- @param src input array.
- @param alpha norm value to normalize to or the lower range boundary in case of the range
- normalization.
- @param beta upper range boundary in case of the range normalization; it is not used for the norm
- normalization.
- @param norm_type normalization type (see cv::NormTypes).
- @param ddepth when negative, the output array has the same type as src; otherwise, it has the same
- number of channels as src and the depth =ddepth.
- @sa norm, Mat::convertTo
- */
- GAPI_EXPORTS_W GMat normalize(const GMat& src, double alpha, double beta,
- int norm_type, int ddepth = -1);
- /** @brief Applies a perspective transformation to an image.
- The function warpPerspective transforms the source image using the specified matrix:
- \f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
- when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- and then put in the formula above instead of M. The function cannot operate in-place.
- @param src input image.
- @param M \f$3\times 3\f$ transformation matrix.
- @param dsize size of the output image.
- @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
- optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
- @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
- @param borderValue value used in case of a constant border; by default, it equals 0.
- @sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
- */
- GAPI_EXPORTS_W GMat warpPerspective(const GMat& src, const Mat& M, const Size& dsize, int flags = cv::INTER_LINEAR,
- int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
- /** @brief Applies an affine transformation to an image.
- The function warpAffine transforms the source image using the specified matrix:
- \f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
- when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- operate in-place.
- @param src input image.
- @param M \f$2\times 3\f$ transformation matrix.
- @param dsize size of the output image.
- @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
- flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
- @param borderMode pixel extrapolation method (see #BorderTypes);
- borderMode=#BORDER_TRANSPARENT isn't supported
- @param borderValue value used in case of a constant border; by default, it is 0.
- @sa warpPerspective, resize, remap, getRectSubPix, transform
- */
- GAPI_EXPORTS_W GMat warpAffine(const GMat& src, const Mat& M, const Size& dsize, int flags = cv::INTER_LINEAR,
- int borderMode = cv::BORDER_CONSTANT, const Scalar& borderValue = Scalar());
- //! @} gapi_transform
- /** @brief Finds centers of clusters and groups input samples around the clusters.
- The function kmeans implements a k-means algorithm that finds the centers of K clusters
- and groups the input samples around the clusters. As an output, \f$\texttt{bestLabels}_i\f$
- contains a 0-based cluster index for the \f$i^{th}\f$ sample.
- @note
- - Function textual ID is "org.opencv.core.kmeansND"
- - In case of an N-dimentional points' set given, input GMat can have the following traits:
- 2 dimensions, a single row or column if there are N channels,
- or N columns if there is a single channel. Mat should have @ref CV_32F depth.
- - Although, if GMat with height != 1, width != 1, channels != 1 given as data, n-dimensional
- samples are considered given in amount of A, where A = height, n = width * channels.
- - In case of GMat given as data:
- - the output labels are returned as 1-channel GMat with sizes
- width = 1, height = A, where A is samples amount, or width = bestLabels.width,
- height = bestLabels.height if bestLabels given;
- - the cluster centers are returned as 1-channel GMat with sizes
- width = n, height = K, where n is samples' dimentionality and K is clusters' amount.
- - As one of possible usages, if you want to control the initial labels for each attempt
- by yourself, you can utilize just the core of the function. To do that, set the number
- of attempts to 1, initialize labels each time using a custom algorithm, pass them with the
- ( flags = #KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best (most-compact) clustering.
- @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
- Function can take GArray<Point2f>, GArray<Point3f> for 2D and 3D cases or GMat for any
- dimentionality and channels.
- @param K Number of clusters to split the set by.
- @param bestLabels Optional input integer array that can store the supposed initial cluster indices
- for every sample. Used when ( flags = #KMEANS_USE_INITIAL_LABELS ) flag is set.
- @param criteria The algorithm termination criteria, that is, the maximum number of iterations
- and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of
- the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
- @param attempts Flag to specify the number of times the algorithm is executed using different
- initial labellings. The algorithm returns the labels that yield the best compactness (see the first
- function return value).
- @param flags Flag that can take values of cv::KmeansFlags .
- @return
- - Compactness measure that is computed as
- \f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
- after every attempt. The best (minimum) value is chosen and the corresponding labels and the
- compactness value are returned by the function.
- - Integer array that stores the cluster indices for every sample.
- - Array of the cluster centers.
- */
- GAPI_EXPORTS_W std::tuple<GOpaque<double>,GMat,GMat>
- kmeans(const GMat& data, const int K, const GMat& bestLabels,
- const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
- /** @overload
- @note
- - Function textual ID is "org.opencv.core.kmeansNDNoInit"
- - #KMEANS_USE_INITIAL_LABELS flag must not be set while using this overload.
- */
- GAPI_EXPORTS_W std::tuple<GOpaque<double>,GMat,GMat>
- kmeans(const GMat& data, const int K, const TermCriteria& criteria, const int attempts,
- const KmeansFlags flags);
- /** @overload
- @note Function textual ID is "org.opencv.core.kmeans2D"
- */
- GAPI_EXPORTS_W std::tuple<GOpaque<double>,GArray<int>,GArray<Point2f>>
- kmeans(const GArray<Point2f>& data, const int K, const GArray<int>& bestLabels,
- const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
- /** @overload
- @note Function textual ID is "org.opencv.core.kmeans3D"
- */
- GAPI_EXPORTS_W std::tuple<GOpaque<double>,GArray<int>,GArray<Point3f>>
- kmeans(const GArray<Point3f>& data, const int K, const GArray<int>& bestLabels,
- const TermCriteria& criteria, const int attempts, const KmeansFlags flags);
- /** @brief Transposes a matrix.
- The function transposes the matrix:
- \f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
- @note
- - Function textual ID is "org.opencv.core.transpose"
- - No complex conjugation is done in case of a complex matrix. It should be done separately if needed.
- @param src input array.
- */
- GAPI_EXPORTS_W GMat transpose(const GMat& src);
- namespace streaming {
- /** @brief Gets dimensions from Mat.
- @note Function textual ID is "org.opencv.streaming.size"
- @param src Input tensor
- @return Size (tensor dimensions).
- */
- GAPI_EXPORTS_W GOpaque<Size> size(const GMat& src);
- /** @overload
- Gets dimensions from rectangle.
- @note Function textual ID is "org.opencv.streaming.sizeR"
- @param r Input rectangle.
- @return Size (rectangle dimensions).
- */
- GAPI_EXPORTS_W GOpaque<Size> size(const GOpaque<Rect>& r);
- /** @brief Gets dimensions from MediaFrame.
- @note Function textual ID is "org.opencv.streaming.sizeMF"
- @param src Input frame
- @return Size (frame dimensions).
- */
- GAPI_EXPORTS_W GOpaque<Size> size(const GFrame& src);
- } //namespace streaming
- } //namespace gapi
- } //namespace cv
- #endif //OPENCV_GAPI_CORE_HPP
|