12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // Author: Liangqian Kong <chargerKong@126.com>
- // Longbu Wang <riskiest@gmail.com>
- #ifndef OPENCV_CORE_QUATERNION_INL_HPP
- #define OPENCV_CORE_QUATERNION_INL_HPP
- #ifndef OPENCV_CORE_QUATERNION_HPP
- #error This is not a standalone header. Include quaternion.hpp instead.
- #endif
- //@cond IGNORE
- ///////////////////////////////////////////////////////////////////////////////////////
- //Implementation
- namespace cv {
- template <typename T>
- Quat<T>::Quat() : w(0), x(0), y(0), z(0) {}
- template <typename T>
- Quat<T>::Quat(const Vec<T, 4> &coeff):w(coeff[0]), x(coeff[1]), y(coeff[2]), z(coeff[3]){}
- template <typename T>
- Quat<T>::Quat(const T qw, const T qx, const T qy, const T qz):w(qw), x(qx), y(qy), z(qz){}
- template <typename T>
- Quat<T> Quat<T>::createFromAngleAxis(const T angle, const Vec<T, 3> &axis)
- {
- T w, x, y, z;
- T vNorm = std::sqrt(axis.dot(axis));
- if (vNorm < CV_QUAT_EPS)
- {
- CV_Error(Error::StsBadArg, "this quaternion does not represent a rotation");
- }
- const T angle_half = angle * T(0.5);
- w = std::cos(angle_half);
- const T sin_v = std::sin(angle_half);
- const T sin_norm = sin_v / vNorm;
- x = sin_norm * axis[0];
- y = sin_norm * axis[1];
- z = sin_norm * axis[2];
- return Quat<T>(w, x, y, z);
- }
- template <typename T>
- Quat<T> Quat<T>::createFromRotMat(InputArray _R)
- {
- CV_CheckTypeEQ(_R.type(), cv::traits::Type<T>::value, "");
- if (_R.rows() != 3 || _R.cols() != 3)
- {
- CV_Error(Error::StsBadArg, "Cannot convert matrix to quaternion: rotation matrix should be a 3x3 matrix");
- }
- Matx<T, 3, 3> R;
- _R.copyTo(R);
- T S, w, x, y, z;
- T trace = R(0, 0) + R(1, 1) + R(2, 2);
- if (trace > 0)
- {
- S = std::sqrt(trace + 1) * T(2);
- x = (R(1, 2) - R(2, 1)) / S;
- y = (R(2, 0) - R(0, 2)) / S;
- z = (R(0, 1) - R(1, 0)) / S;
- w = -T(0.25) * S;
- }
- else if (R(0, 0) > R(1, 1) && R(0, 0) > R(2, 2))
- {
- S = std::sqrt(T(1.0) + R(0, 0) - R(1, 1) - R(2, 2)) * T(2);
- x = -T(0.25) * S;
- y = -(R(1, 0) + R(0, 1)) / S;
- z = -(R(0, 2) + R(2, 0)) / S;
- w = (R(1, 2) - R(2, 1)) / S;
- }
- else if (R(1, 1) > R(2, 2))
- {
- S = std::sqrt(T(1.0) - R(0, 0) + R(1, 1) - R(2, 2)) * T(2);
- x = (R(0, 1) + R(1, 0)) / S;
- y = T(0.25) * S;
- z = (R(1, 2) + R(2, 1)) / S;
- w = (R(0, 2) - R(2, 0)) / S;
- }
- else
- {
- S = std::sqrt(T(1.0) - R(0, 0) - R(1, 1) + R(2, 2)) * T(2);
- x = (R(0, 2) + R(2, 0)) / S;
- y = (R(1, 2) + R(2, 1)) / S;
- z = T(0.25) * S;
- w = -(R(0, 1) - R(1, 0)) / S;
- }
- return Quat<T> (w, x, y, z);
- }
- template <typename T>
- Quat<T> Quat<T>::createFromRvec(InputArray _rvec)
- {
- if (!((_rvec.cols() == 1 && _rvec.rows() == 3) || (_rvec.cols() == 3 && _rvec.rows() == 1))) {
- CV_Error(Error::StsBadArg, "Cannot convert rotation vector to quaternion: The length of rotation vector should be 3");
- }
- Vec<T, 3> rvec;
- _rvec.copyTo(rvec);
- T psi = std::sqrt(rvec.dot(rvec));
- if (abs(psi) < CV_QUAT_EPS) {
- return Quat<T> (1, 0, 0, 0);
- }
- Vec<T, 3> axis = rvec / psi;
- return createFromAngleAxis(psi, axis);
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator-() const
- {
- return Quat<T>(-w, -x, -y, -z);
- }
- template <typename T>
- inline bool Quat<T>::operator==(const Quat<T> &q) const
- {
- return (abs(w - q.w) < CV_QUAT_EPS && abs(x - q.x) < CV_QUAT_EPS && abs(y - q.y) < CV_QUAT_EPS && abs(z - q.z) < CV_QUAT_EPS);
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator+(const Quat<T> &q1) const
- {
- return Quat<T>(w + q1.w, x + q1.x, y + q1.y, z + q1.z);
- }
- template <typename T>
- inline Quat<T> operator+(const T a, const Quat<T>& q)
- {
- return Quat<T>(q.w + a, q.x, q.y, q.z);
- }
- template <typename T>
- inline Quat<T> operator+(const Quat<T>& q, const T a)
- {
- return Quat<T>(q.w + a, q.x, q.y, q.z);
- }
- template <typename T>
- inline Quat<T> operator-(const T a, const Quat<T>& q)
- {
- return Quat<T>(a - q.w, -q.x, -q.y, -q.z);
- }
- template <typename T>
- inline Quat<T> operator-(const Quat<T>& q, const T a)
- {
- return Quat<T>(q.w - a, q.x, q.y, q.z);
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator-(const Quat<T> &q1) const
- {
- return Quat<T>(w - q1.w, x - q1.x, y - q1.y, z - q1.z);
- }
- template <typename T>
- inline Quat<T>& Quat<T>::operator+=(const Quat<T> &q1)
- {
- w += q1.w;
- x += q1.x;
- y += q1.y;
- z += q1.z;
- return *this;
- }
- template <typename T>
- inline Quat<T>& Quat<T>::operator-=(const Quat<T> &q1)
- {
- w -= q1.w;
- x -= q1.x;
- y -= q1.y;
- z -= q1.z;
- return *this;
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator*(const Quat<T> &q1) const
- {
- Vec<T, 4> q{w, x, y, z};
- Vec<T, 4> q2{q1.w, q1.x, q1.y, q1.z};
- return Quat<T>(q * q2);
- }
- template <typename T>
- Quat<T> operator*(const Quat<T> &q1, const T a)
- {
- return Quat<T>(a * q1.w, a * q1.x, a * q1.y, a * q1.z);
- }
- template <typename T>
- Quat<T> operator*(const T a, const Quat<T> &q1)
- {
- return Quat<T>(a * q1.w, a * q1.x, a * q1.y, a * q1.z);
- }
- template <typename T>
- inline Quat<T>& Quat<T>::operator*=(const Quat<T> &q1)
- {
- T qw, qx, qy, qz;
- qw = w * q1.w - x * q1.x - y * q1.y - z * q1.z;
- qx = x * q1.w + w * q1.x + y * q1.z - z * q1.y;
- qy = y * q1.w + w * q1.y + z * q1.x - x * q1.z;
- qz = z * q1.w + w * q1.z + x * q1.y - y * q1.x;
- w = qw;
- x = qx;
- y = qy;
- z = qz;
- return *this;
- }
- template <typename T>
- inline Quat<T>& Quat<T>::operator/=(const Quat<T> &q1)
- {
- Quat<T> q(*this * q1.inv());
- w = q.w;
- x = q.x;
- y = q.y;
- z = q.z;
- return *this;
- }
- template <typename T>
- Quat<T>& Quat<T>::operator*=(const T q1)
- {
- w *= q1;
- x *= q1;
- y *= q1;
- z *= q1;
- return *this;
- }
- template <typename T>
- inline Quat<T>& Quat<T>::operator/=(const T a)
- {
- const T a_inv = 1.0 / a;
- w *= a_inv;
- x *= a_inv;
- y *= a_inv;
- z *= a_inv;
- return *this;
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator/(const T a) const
- {
- const T a_inv = T(1.0) / a;
- return Quat<T>(w * a_inv, x * a_inv, y * a_inv, z * a_inv);
- }
- template <typename T>
- inline Quat<T> Quat<T>::operator/(const Quat<T> &q) const
- {
- return *this * q.inv();
- }
- template <typename T>
- inline const T& Quat<T>::operator[](std::size_t n) const
- {
- switch (n) {
- case 0:
- return w;
- case 1:
- return x;
- case 2:
- return y;
- case 3:
- return z;
- default:
- CV_Error(Error::StsOutOfRange, "subscript exceeds the index range");
- }
- }
- template <typename T>
- inline T& Quat<T>::operator[](std::size_t n)
- {
- switch (n) {
- case 0:
- return w;
- case 1:
- return x;
- case 2:
- return y;
- case 3:
- return z;
- default:
- CV_Error(Error::StsOutOfRange, "subscript exceeds the index range");
- }
- }
- template <typename T>
- std::ostream & operator<<(std::ostream &os, const Quat<T> &q)
- {
- os << "Quat " << Vec<T, 4>{q.w, q.x, q.y, q.z};
- return os;
- }
- template <typename T>
- inline T Quat<T>::at(size_t index) const
- {
- return (*this)[index];
- }
- template <typename T>
- inline Quat<T> Quat<T>::conjugate() const
- {
- return Quat<T>(w, -x, -y, -z);
- }
- template <typename T>
- inline T Quat<T>::norm() const
- {
- return std::sqrt(dot(*this));
- }
- template <typename T>
- Quat<T> exp(const Quat<T> &q)
- {
- return q.exp();
- }
- template <typename T>
- Quat<T> Quat<T>::exp() const
- {
- Vec<T, 3> v{x, y, z};
- T normV = std::sqrt(v.dot(v));
- T k = normV < CV_QUAT_EPS ? 1 : std::sin(normV) / normV;
- return std::exp(w) * Quat<T>(std::cos(normV), v[0] * k, v[1] * k, v[2] * k);
- }
- template <typename T>
- Quat<T> log(const Quat<T> &q, QuatAssumeType assumeUnit)
- {
- return q.log(assumeUnit);
- }
- template <typename T>
- Quat<T> Quat<T>::log(QuatAssumeType assumeUnit) const
- {
- Vec<T, 3> v{x, y, z};
- T vNorm = std::sqrt(v.dot(v));
- if (assumeUnit)
- {
- T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w) / vNorm;
- return Quat<T>(0, v[0] * k, v[1] * k, v[2] * k);
- }
- T qNorm = norm();
- if (qNorm < CV_QUAT_EPS)
- {
- CV_Error(Error::StsBadArg, "Cannot apply this quaternion to log function: undefined");
- }
- T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w / qNorm) / vNorm;
- return Quat<T>(std::log(qNorm), v[0] * k, v[1] * k, v[2] *k);
- }
- template <typename T>
- inline Quat<T> power(const Quat<T> &q1, const T alpha, QuatAssumeType assumeUnit)
- {
- return q1.power(alpha, assumeUnit);
- }
- template <typename T>
- inline Quat<T> Quat<T>::power(const T alpha, QuatAssumeType assumeUnit) const
- {
- if (x * x + y * y + z * z > CV_QUAT_EPS)
- {
- T angle = getAngle(assumeUnit);
- Vec<T, 3> axis = getAxis(assumeUnit);
- if (assumeUnit)
- {
- return createFromAngleAxis(alpha * angle, axis);
- }
- return std::pow(norm(), alpha) * createFromAngleAxis(alpha * angle, axis);
- }
- else
- {
- return std::pow(norm(), alpha) * Quat<T>(w, x, y, z);
- }
- }
- template <typename T>
- inline Quat<T> sqrt(const Quat<T> &q, QuatAssumeType assumeUnit)
- {
- return q.sqrt(assumeUnit);
- }
- template <typename T>
- inline Quat<T> Quat<T>::sqrt(QuatAssumeType assumeUnit) const
- {
- return power(0.5, assumeUnit);
- }
- template <typename T>
- inline Quat<T> power(const Quat<T> &p, const Quat<T> &q, QuatAssumeType assumeUnit)
- {
- return p.power(q, assumeUnit);
- }
- template <typename T>
- inline Quat<T> Quat<T>::power(const Quat<T> &q, QuatAssumeType assumeUnit) const
- {
- return cv::exp(q * log(assumeUnit));
- }
- template <typename T>
- inline T Quat<T>::dot(Quat<T> q1) const
- {
- return w * q1.w + x * q1.x + y * q1.y + z * q1.z;
- }
- template <typename T>
- inline Quat<T> crossProduct(const Quat<T> &p, const Quat<T> &q)
- {
- return p.crossProduct(q);
- }
- template <typename T>
- inline Quat<T> Quat<T>::crossProduct(const Quat<T> &q) const
- {
- return Quat<T> (0, y * q.z - z * q.y, z * q.x - x * q.z, x * q.y - q.x * y);
- }
- template <typename T>
- inline Quat<T> Quat<T>::normalize() const
- {
- T normVal = norm();
- if (normVal < CV_QUAT_EPS)
- {
- CV_Error(Error::StsBadArg, "Cannot normalize this quaternion: the norm is too small.");
- }
- return Quat<T>(w / normVal, x / normVal, y / normVal, z / normVal) ;
- }
- template <typename T>
- inline Quat<T> inv(const Quat<T> &q, QuatAssumeType assumeUnit)
- {
- return q.inv(assumeUnit);
- }
- template <typename T>
- inline Quat<T> Quat<T>::inv(QuatAssumeType assumeUnit) const
- {
- if (assumeUnit)
- {
- return conjugate();
- }
- T norm2 = dot(*this);
- if (norm2 < CV_QUAT_EPS)
- {
- CV_Error(Error::StsBadArg, "This quaternion do not have inverse quaternion");
- }
- return conjugate() / norm2;
- }
- template <typename T>
- inline Quat<T> sinh(const Quat<T> &q)
- {
- return q.sinh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::sinh() const
- {
- Vec<T, 3> v{x, y ,z};
- T vNorm = std::sqrt(v.dot(v));
- T k = vNorm < CV_QUAT_EPS ? 1 : std::cosh(w) * std::sin(vNorm) / vNorm;
- return Quat<T>(std::sinh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k);
- }
- template <typename T>
- inline Quat<T> cosh(const Quat<T> &q)
- {
- return q.cosh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::cosh() const
- {
- Vec<T, 3> v{x, y ,z};
- T vNorm = std::sqrt(v.dot(v));
- T k = vNorm < CV_QUAT_EPS ? 1 : std::sinh(w) * std::sin(vNorm) / vNorm;
- return Quat<T>(std::cosh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k);
- }
- template <typename T>
- inline Quat<T> tanh(const Quat<T> &q)
- {
- return q.tanh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::tanh() const
- {
- return sinh() * cosh().inv();
- }
- template <typename T>
- inline Quat<T> sin(const Quat<T> &q)
- {
- return q.sin();
- }
- template <typename T>
- inline Quat<T> Quat<T>::sin() const
- {
- Vec<T, 3> v{x, y ,z};
- T vNorm = std::sqrt(v.dot(v));
- T k = vNorm < CV_QUAT_EPS ? 1 : std::cos(w) * std::sinh(vNorm) / vNorm;
- return Quat<T>(std::sin(w) * std::cosh(vNorm), v[0] * k, v[1] * k, v[2] * k);
- }
- template <typename T>
- inline Quat<T> cos(const Quat<T> &q)
- {
- return q.cos();
- }
- template <typename T>
- inline Quat<T> Quat<T>::cos() const
- {
- Vec<T, 3> v{x, y ,z};
- T vNorm = std::sqrt(v.dot(v));
- T k = vNorm < CV_QUAT_EPS ? 1 : std::sin(w) * std::sinh(vNorm) / vNorm;
- return Quat<T>(std::cos(w) * std::cosh(vNorm), -v[0] * k, -v[1] * k, -v[2] * k);
- }
- template <typename T>
- inline Quat<T> tan(const Quat<T> &q)
- {
- return q.tan();
- }
- template <typename T>
- inline Quat<T> Quat<T>::tan() const
- {
- return sin() * cos().inv();
- }
- template <typename T>
- inline Quat<T> asinh(const Quat<T> &q)
- {
- return q.asinh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::asinh() const
- {
- return cv::log(*this + cv::power(*this * *this + Quat<T>(1, 0, 0, 0), 0.5));
- }
- template <typename T>
- inline Quat<T> acosh(const Quat<T> &q)
- {
- return q.acosh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::acosh() const
- {
- return cv::log(*this + cv::power(*this * *this - Quat<T>(1,0,0,0), 0.5));
- }
- template <typename T>
- inline Quat<T> atanh(const Quat<T> &q)
- {
- return q.atanh();
- }
- template <typename T>
- inline Quat<T> Quat<T>::atanh() const
- {
- Quat<T> ident(1, 0, 0, 0);
- Quat<T> c1 = (ident + *this).log();
- Quat<T> c2 = (ident - *this).log();
- return 0.5 * (c1 - c2);
- }
- template <typename T>
- inline Quat<T> asin(const Quat<T> &q)
- {
- return q.asin();
- }
- template <typename T>
- inline Quat<T> Quat<T>::asin() const
- {
- Quat<T> v(0, x, y, z);
- T vNorm = v.norm();
- T k = vNorm < CV_QUAT_EPS ? 1 : vNorm;
- return -v / k * (*this * v / k).asinh();
- }
- template <typename T>
- inline Quat<T> acos(const Quat<T> &q)
- {
- return q.acos();
- }
- template <typename T>
- inline Quat<T> Quat<T>::acos() const
- {
- Quat<T> v(0, x, y, z);
- T vNorm = v.norm();
- T k = vNorm < CV_QUAT_EPS ? 1 : vNorm;
- return -v / k * acosh();
- }
- template <typename T>
- inline Quat<T> atan(const Quat<T> &q)
- {
- return q.atan();
- }
- template <typename T>
- inline Quat<T> Quat<T>::atan() const
- {
- Quat<T> v(0, x, y, z);
- T vNorm = v.norm();
- T k = vNorm < CV_QUAT_EPS ? 1 : vNorm;
- return -v / k * (*this * v / k).atanh();
- }
- template <typename T>
- inline T Quat<T>::getAngle(QuatAssumeType assumeUnit) const
- {
- if (assumeUnit)
- {
- return 2 * std::acos(w);
- }
- if (norm() < CV_QUAT_EPS)
- {
- CV_Error(Error::StsBadArg, "This quaternion does not represent a rotation");
- }
- return 2 * std::acos(w / norm());
- }
- template <typename T>
- inline Vec<T, 3> Quat<T>::getAxis(QuatAssumeType assumeUnit) const
- {
- T angle = getAngle(assumeUnit);
- const T sin_v = std::sin(angle * 0.5);
- if (assumeUnit)
- {
- return Vec<T, 3>{x, y, z} / sin_v;
- }
- return Vec<T, 3> {x, y, z} / (norm() * sin_v);
- }
- template <typename T>
- Matx<T, 4, 4> Quat<T>::toRotMat4x4(QuatAssumeType assumeUnit) const
- {
- T a = w, b = x, c = y, d = z;
- if (!assumeUnit)
- {
- Quat<T> qTemp = normalize();
- a = qTemp.w;
- b = qTemp.x;
- c = qTemp.y;
- d = qTemp.z;
- }
- Matx<T, 4, 4> R{
- 1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c) , 0,
- 2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b) , 0,
- 2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c), 0,
- 0 , 0 , 0 , 1,
- };
- return R;
- }
- template <typename T>
- Matx<T, 3, 3> Quat<T>::toRotMat3x3(QuatAssumeType assumeUnit) const
- {
- T a = w, b = x, c = y, d = z;
- if (!assumeUnit)
- {
- Quat<T> qTemp = normalize();
- a = qTemp.w;
- b = qTemp.x;
- c = qTemp.y;
- d = qTemp.z;
- }
- Matx<T, 3, 3> R{
- 1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c),
- 2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b),
- 2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c)
- };
- return R;
- }
- template <typename T>
- Vec<T, 3> Quat<T>::toRotVec(QuatAssumeType assumeUnit) const
- {
- T angle = getAngle(assumeUnit);
- Vec<T, 3> axis = getAxis(assumeUnit);
- return angle * axis;
- }
- template <typename T>
- Vec<T, 4> Quat<T>::toVec() const
- {
- return Vec<T, 4>{w, x, y, z};
- }
- template <typename T>
- Quat<T> Quat<T>::lerp(const Quat<T> &q0, const Quat<T> &q1, const T t)
- {
- return (1 - t) * q0 + t * q1;
- }
- template <typename T>
- Quat<T> Quat<T>::slerp(const Quat<T> &q0, const Quat<T> &q1, const T t, QuatAssumeType assumeUnit, bool directChange)
- {
- Quat<T> v0(q0);
- Quat<T> v1(q1);
- if (!assumeUnit)
- {
- v0 = v0.normalize();
- v1 = v1.normalize();
- }
- T cosTheta = v0.dot(v1);
- constexpr T DOT_THRESHOLD = 0.995;
- if (std::abs(cosTheta) > DOT_THRESHOLD)
- {
- return nlerp(v0, v1, t, QUAT_ASSUME_UNIT);
- }
- if (directChange && cosTheta < 0)
- {
- v0 = -v0;
- cosTheta = -cosTheta;
- }
- T sinTheta = std::sqrt(1 - cosTheta * cosTheta);
- T angle = atan2(sinTheta, cosTheta);
- return (std::sin((1 - t) * angle) / (sinTheta) * v0 + std::sin(t * angle) / (sinTheta) * v1).normalize();
- }
- template <typename T>
- inline Quat<T> Quat<T>::nlerp(const Quat<T> &q0, const Quat<T> &q1, const T t, QuatAssumeType assumeUnit)
- {
- Quat<T> v0(q0), v1(q1);
- if (v1.dot(v0) < 0)
- {
- v0 = -v0;
- }
- if (assumeUnit)
- {
- return ((1 - t) * v0 + t * v1).normalize();
- }
- v0 = v0.normalize();
- v1 = v1.normalize();
- return ((1 - t) * v0 + t * v1).normalize();
- }
- template <typename T>
- inline bool Quat<T>::isNormal(T eps) const
- {
- double normVar = norm();
- if ((normVar > 1 - eps) && (normVar < 1 + eps))
- return true;
- return false;
- }
- template <typename T>
- inline void Quat<T>::assertNormal(T eps) const
- {
- if (!isNormal(eps))
- CV_Error(Error::StsBadArg, "Quaternion should be normalized");
- }
- template <typename T>
- inline Quat<T> Quat<T>::squad(const Quat<T> &q0, const Quat<T> &q1,
- const Quat<T> &q2, const Quat<T> &q3,
- const T t, QuatAssumeType assumeUnit,
- bool directChange)
- {
- Quat<T> v0(q0), v1(q1), v2(q2), v3(q3);
- if (!assumeUnit)
- {
- v0 = v0.normalize();
- v1 = v1.normalize();
- v2 = v2.normalize();
- v3 = v3.normalize();
- }
- Quat<T> c0 = slerp(v0, v3, t, assumeUnit, directChange);
- Quat<T> c1 = slerp(v1, v2, t, assumeUnit, directChange);
- return slerp(c0, c1, 2 * t * (1 - t), assumeUnit, directChange);
- }
- template <typename T>
- Quat<T> Quat<T>::interPoint(const Quat<T> &q0, const Quat<T> &q1,
- const Quat<T> &q2, QuatAssumeType assumeUnit)
- {
- Quat<T> v0(q0), v1(q1), v2(q2);
- if (!assumeUnit)
- {
- v0 = v0.normalize();
- v1 = v1.normalize();
- v2 = v2.normalize();
- }
- return v1 * cv::exp(-(cv::log(v1.conjugate() * v0, assumeUnit) + (cv::log(v1.conjugate() * v2, assumeUnit))) / 4);
- }
- template <typename T>
- Quat<T> Quat<T>::spline(const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2, const Quat<T> &q3, const T t, QuatAssumeType assumeUnit)
- {
- Quat<T> v0(q0), v1(q1), v2(q2), v3(q3);
- if (!assumeUnit)
- {
- v0 = v0.normalize();
- v1 = v1.normalize();
- v2 = v2.normalize();
- v3 = v3.normalize();
- }
- T cosTheta;
- std::vector<Quat<T>> vec{v0, v1, v2, v3};
- for (size_t i = 0; i < 3; ++i)
- {
- cosTheta = vec[i].dot(vec[i + 1]);
- if (cosTheta < 0)
- {
- vec[i + 1] = -vec[i + 1];
- }
- }
- Quat<T> s1 = interPoint(vec[0], vec[1], vec[2], QUAT_ASSUME_UNIT);
- Quat<T> s2 = interPoint(vec[1], vec[2], vec[3], QUAT_ASSUME_UNIT);
- return squad(vec[1], s1, s2, vec[2], t, assumeUnit, QUAT_ASSUME_NOT_UNIT);
- }
- namespace detail {
- template <typename T> static
- Quat<T> createFromAxisRot(int axis, const T theta)
- {
- if (axis == 0)
- return Quat<T>::createFromXRot(theta);
- if (axis == 1)
- return Quat<T>::createFromYRot(theta);
- if (axis == 2)
- return Quat<T>::createFromZRot(theta);
- CV_Assert(0);
- }
- inline bool isIntAngleType(QuatEnum::EulerAnglesType eulerAnglesType)
- {
- return eulerAnglesType < QuatEnum::EXT_XYZ;
- }
- inline bool isTaitBryan(QuatEnum::EulerAnglesType eulerAnglesType)
- {
- return eulerAnglesType/6 == 1 || eulerAnglesType/6 == 3;
- }
- } // namespace detail
- template <typename T>
- Quat<T> Quat<T>::createFromYRot(const T theta)
- {
- return Quat<T>{std::cos(theta * 0.5f), 0, std::sin(theta * 0.5f), 0};
- }
- template <typename T>
- Quat<T> Quat<T>::createFromXRot(const T theta){
- return Quat<T>{std::cos(theta * 0.5f), std::sin(theta * 0.5f), 0, 0};
- }
- template <typename T>
- Quat<T> Quat<T>::createFromZRot(const T theta){
- return Quat<T>{std::cos(theta * 0.5f), 0, 0, std::sin(theta * 0.5f)};
- }
- template <typename T>
- Quat<T> Quat<T>::createFromEulerAngles(const Vec<T, 3> &angles, QuatEnum::EulerAnglesType eulerAnglesType) {
- CV_Assert(eulerAnglesType < QuatEnum::EulerAnglesType::EULER_ANGLES_MAX_VALUE);
- static const int rotationAxis[24][3] = {
- {0, 1, 2}, ///< Intrinsic rotations with the Euler angles type X-Y-Z
- {0, 2, 1}, ///< Intrinsic rotations with the Euler angles type X-Z-Y
- {1, 0, 2}, ///< Intrinsic rotations with the Euler angles type Y-X-Z
- {1, 2, 0}, ///< Intrinsic rotations with the Euler angles type Y-Z-X
- {2, 0, 1}, ///< Intrinsic rotations with the Euler angles type Z-X-Y
- {2, 1, 0}, ///< Intrinsic rotations with the Euler angles type Z-Y-X
- {0, 1, 0}, ///< Intrinsic rotations with the Euler angles type X-Y-X
- {0, 2, 0}, ///< Intrinsic rotations with the Euler angles type X-Z-X
- {1, 0, 1}, ///< Intrinsic rotations with the Euler angles type Y-X-Y
- {1, 2, 1}, ///< Intrinsic rotations with the Euler angles type Y-Z-Y
- {2, 0, 2}, ///< Intrinsic rotations with the Euler angles type Z-X-Z
- {2, 1, 2}, ///< Intrinsic rotations with the Euler angles type Z-Y-Z
- {0, 1, 2}, ///< Extrinsic rotations with the Euler angles type X-Y-Z
- {0, 2, 1}, ///< Extrinsic rotations with the Euler angles type X-Z-Y
- {1, 0, 2}, ///< Extrinsic rotations with the Euler angles type Y-X-Z
- {1, 2, 0}, ///< Extrinsic rotations with the Euler angles type Y-Z-X
- {2, 0, 1}, ///< Extrinsic rotations with the Euler angles type Z-X-Y
- {2, 1, 0}, ///< Extrinsic rotations with the Euler angles type Z-Y-X
- {0, 1, 0}, ///< Extrinsic rotations with the Euler angles type X-Y-X
- {0, 2, 0}, ///< Extrinsic rotations with the Euler angles type X-Z-X
- {1, 0, 1}, ///< Extrinsic rotations with the Euler angles type Y-X-Y
- {1, 2, 1}, ///< Extrinsic rotations with the Euler angles type Y-Z-Y
- {2, 0, 2}, ///< Extrinsic rotations with the Euler angles type Z-X-Z
- {2, 1, 2} ///< Extrinsic rotations with the Euler angles type Z-Y-Z
- };
- Quat<T> q1 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][0], angles(0));
- Quat<T> q2 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][1], angles(1));
- Quat<T> q3 = detail::createFromAxisRot(rotationAxis[eulerAnglesType][2], angles(2));
- if (detail::isIntAngleType(eulerAnglesType))
- {
- return q1 * q2 * q3;
- }
- else // (!detail::isIntAngleType<T>(eulerAnglesType))
- {
- return q3 * q2 * q1;
- }
- }
- template <typename T>
- Vec<T, 3> Quat<T>::toEulerAngles(QuatEnum::EulerAnglesType eulerAnglesType){
- CV_Assert(eulerAnglesType < QuatEnum::EulerAnglesType::EULER_ANGLES_MAX_VALUE);
- Matx33d R = toRotMat3x3();
- enum {
- C_ZERO,
- C_PI,
- C_PI_2,
- N_CONSTANTS,
- R_0_0 = N_CONSTANTS, R_0_1, R_0_2,
- R_1_0, R_1_1, R_1_2,
- R_2_0, R_2_1, R_2_2
- };
- static const T constants_[N_CONSTANTS] = {
- 0, // C_ZERO
- (T)CV_PI, // C_PI
- (T)(CV_PI * 0.5) // C_PI_2, -C_PI_2
- };
- static const int rotationR_[24][12] = {
- {+R_0_2, +R_1_0, +R_1_1, C_PI_2, +R_2_1, +R_1_1, -C_PI_2, -R_1_2, +R_2_2, +R_0_2, -R_0_1, +R_0_0}, // INT_XYZ
- {+R_0_1, -R_1_2, +R_2_2, -C_PI_2, +R_2_0, +R_2_2, C_PI_2, +R_2_1, +R_1_1, -R_0_1, +R_0_2, +R_0_0}, // INT_XZY
- {+R_1_2, -R_0_1, +R_0_0, -C_PI_2, +R_0_1, +R_0_0, C_PI_2, +R_0_2, +R_2_2, -R_1_2, +R_1_0, +R_1_1}, // INT_YXZ
- {+R_1_0, +R_0_2, +R_2_2, C_PI_2, +R_0_2, +R_0_1, -C_PI_2, -R_2_0, +R_0_0, +R_1_0, -R_1_2, +R_1_1}, // INT_YZX
- {+R_2_1, +R_1_0, +R_0_0, C_PI_2, +R_1_0, +R_0_0, -C_PI_2, -R_0_1, +R_1_1, +R_2_1, -R_2_0, +R_2_2}, // INT_ZXY
- {+R_2_0, -R_0_1, +R_1_1, -C_PI_2, +R_1_2, +R_1_1, C_PI_2, +R_1_0, +R_0_0, -R_2_0, +R_2_1, +R_2_2}, // INT_ZYX
- {+R_0_0, +R_2_1, +R_2_2, C_ZERO, +R_1_2, +R_1_1, C_PI, +R_1_0, -R_2_0, +R_0_0, +R_0_1, +R_0_2}, // INT_XYX
- {+R_0_0, +R_2_1, +R_2_2, C_ZERO, -R_2_1, +R_2_2, C_PI, +R_2_0, +R_1_0, +R_0_0, +R_0_2, -R_0_1}, // INT_XZX
- {+R_1_1, +R_0_2, +R_0_0, C_ZERO, -R_2_0, +R_0_0, C_PI, +R_0_1, +R_2_1, +R_1_1, +R_1_0, -R_1_2}, // INT_YXY
- {+R_1_1, +R_0_2, +R_0_0, C_ZERO, +R_0_2, -R_0_0, C_PI, +R_2_1, -R_0_1, +R_1_1, +R_1_2, +R_1_0}, // INT_YZY
- {+R_2_2, +R_1_0, +R_1_1, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_0_2, -R_1_2, +R_2_2, +R_2_0, +R_2_1}, // INT_ZXZ
- {+R_2_2, +R_1_0, +R_0_0, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_1_2, +R_0_2, +R_2_2, +R_2_1, -R_2_0}, // INT_ZYZ
- {+R_2_0, -C_PI_2, -R_0_1, +R_1_1, C_PI_2, +R_1_2, +R_1_1, +R_2_1, +R_2_2, -R_2_0, +R_1_0, +R_0_0}, // EXT_XYZ
- {+R_1_0, C_PI_2, +R_0_2, +R_2_2, -C_PI_2, +R_0_2, +R_0_1, -R_1_2, +R_1_1, +R_1_0, -R_2_0, +R_0_0}, // EXT_XZY
- {+R_2_1, C_PI_2, +R_1_0, +R_0_0, -C_PI_2, +R_1_0, +R_0_0, -R_2_0, +R_2_2, +R_2_1, -R_0_1, +R_1_1}, // EXT_YXZ
- {+R_0_2, -C_PI_2, -R_1_2, +R_2_2, C_PI_2, +R_2_0, +R_2_2, +R_0_2, +R_0_0, -R_0_1, +R_2_1, +R_1_1}, // EXT_YZX
- {+R_1_2, -C_PI_2, -R_0_1, +R_0_0, C_PI_2, +R_0_1, +R_0_0, +R_1_0, +R_1_1, -R_1_2, +R_0_2, +R_2_2}, // EXT_ZXY
- {+R_0_2, C_PI_2, +R_1_0, +R_1_1, -C_PI_2, +R_2_1, +R_1_1, -R_0_1, +R_0_0, +R_0_2, -R_1_2, +R_2_2}, // EXT_ZYX
- {+R_0_0, C_ZERO, +R_2_1, +R_2_2, C_PI, +R_1_2, +R_1_1, +R_0_1, +R_0_2, +R_0_0, +R_1_0, -R_2_0}, // EXT_XYX
- {+R_0_0, C_ZERO, +R_2_1, +R_2_2, C_PI, +R_2_1, +R_2_2, +R_0_2, -R_0_1, +R_0_0, +R_2_0, +R_1_0}, // EXT_XZX
- {+R_1_1, C_ZERO, +R_0_2, +R_0_0, C_PI, -R_2_0, +R_0_0, +R_1_0, -R_1_2, +R_1_1, +R_0_1, +R_2_1}, // EXT_YXY
- {+R_1_1, C_ZERO, +R_0_2, +R_0_0, C_PI, +R_0_2, -R_0_0, +R_1_2, +R_1_0, +R_1_1, +R_2_1, -R_0_1}, // EXT_YZY
- {+R_2_2, C_ZERO, +R_1_0, +R_1_1, C_PI, +R_1_0, +R_0_0, +R_2_0, +R_2_1, +R_2_2, +R_0_2, -R_1_2}, // EXT_ZXZ
- {+R_2_2, C_ZERO, +R_1_0, +R_0_0, C_PI, +R_1_0, +R_0_0, +R_2_1, -R_2_0, +R_2_2, +R_1_2, +R_0_2}, // EXT_ZYZ
- };
- T rotationR[12];
- for (int i = 0; i < 12; i++)
- {
- int id = rotationR_[eulerAnglesType][i];
- unsigned idx = std::abs(id);
- T value = 0.0f;
- if (idx < N_CONSTANTS)
- {
- value = constants_[idx];
- }
- else
- {
- unsigned r_idx = idx - N_CONSTANTS;
- CV_DbgAssert(r_idx < 9);
- value = R.val[r_idx];
- }
- bool isNegative = id < 0;
- if (isNegative)
- value = -value;
- rotationR[i] = value;
- }
- Vec<T, 3> angles;
- if (detail::isIntAngleType(eulerAnglesType))
- {
- if (abs(rotationR[0] - 1) < CV_QUAT_CONVERT_THRESHOLD)
- {
- CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the third angle to 0");
- angles = {std::atan2(rotationR[1], rotationR[2]), rotationR[3], 0};
- return angles;
- }
- else if(abs(rotationR[0] + 1) < CV_QUAT_CONVERT_THRESHOLD)
- {
- CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the third angle to 0");
- angles = {std::atan2(rotationR[4], rotationR[5]), rotationR[6], 0};
- return angles;
- }
- }
- else // (!detail::isIntAngleType<T>(eulerAnglesType))
- {
- if (abs(rotationR[0] - 1) < CV_QUAT_CONVERT_THRESHOLD)
- {
- CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the first angle to 0");
- angles = {0, rotationR[1], std::atan2(rotationR[2], rotationR[3])};
- return angles;
- }
- else if (abs(rotationR[0] + 1) < CV_QUAT_CONVERT_THRESHOLD)
- {
- CV_LOG_WARNING(NULL,"Gimbal Lock occurs. Euler angles are non-unique, we set the first angle to 0");
- angles = {0, rotationR[4], std::atan2(rotationR[5], rotationR[6])};
- return angles;
- }
- }
- angles(0) = std::atan2(rotationR[7], rotationR[8]);
- if (detail::isTaitBryan(eulerAnglesType))
- angles(1) = std::acos(rotationR[9]);
- else
- angles(1) = std::asin(rotationR[9]);
- angles(2) = std::atan2(rotationR[10], rotationR[11]);
- return angles;
- }
- } // namepsace
- //! @endcond
- #endif /*OPENCV_CORE_QUATERNION_INL_HPP*/
|